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On the Convergence of an Interpolatory Product Rule 
for Evaluating Cauchy Principal Value Integrals* 

By Giuliana Criscuolo and Giuseppe Mastroianni 

Abstract. The authors give convergence theorems for interpolatory product rules for evaluat- 
ing Cauchy singular integrals and obtain asymptotic estimates of the remainder. Some results, 
previously established by other authors, are generalized and improved. 

1. Introduction. Let (D(wf; t) be the integral in the Cauchy principal value sense of 
the function f, defined by 

( wf; t) =J f(x) w(x) dx 

= lim ~f (x) (1.1) /=~ lim | f()w(x) dx, t e A c (-1,1), 

where we assume that w is a nonnegative weight function on I = [-1,1] such that 
0< J 1' w(x)dx < x. 

Let C(I) be the set of continuous functions on I and w(g; 8) the modulus of 
continuity of the function g e C(I), defined by 

c(g; 8= max Ig(x) - g(y), x, y E I, 8 > 0. 
Ix-yIl'3 

If g is continuous on I and the modulus of continuity w of g satisfies 

oI 8 lw(g; 8) dS< o, 

we say that the function g is of "Dini type" (g E DT(I)). It is well known that a 
sufficient condition for the existence and the continuity of 0(wf; t) is that w, 
f E DT(I). The requirement that w E DT(I) can be relaxed; indeed, w may have 
some singularities. Moreover, if g e DT(I) then the relation 

((Dg; 8) = O(w (g; 8)), 8 0, 

holds on any closed subset of A (see, e.g., [1]). 
Let { p(w)} be the sequence of the orthonormal polynomials on I associated 

with the weight function w. We denote the zeros of 

pn(x) =pn(w; x) = a,xn + lower degree terms, a I> 0 
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by xn i = xn,i(w), i = 1,2,.. ., n, ordered increasingly, 
-1 < xnj1 < x n,2 < .. < Xn,n < 1 

Let Lm(v; f; x) be the interpolating polynomial of f on the knots Xmk = Xm,k(V), 

k = 1,2, ... , m, where v may or may not be equal to w. The polynomial Lm(v; f; x) 
is defined by 

m 

Lm(V; f; X) = l lm,k(V; X)f (Xm,k), 
k=1 

where 

lm,k(v; X) = 
PM (V; X) kM 

m ; (X - Xm,k)Pm(V;Xm,k) k = 1,2,...,m. 

If we consider Lm(v; f; x) instead of f in (1.1), we obtain the following interpola- 
tory product rule for the numerical evaluation of 4D(wf; t): 

m 

(1.2) 4 (wf; t) = E Am,k(v; t)f(Xmk) 

k=1 

where 

Am,k(V; t) = tw(x) dx 

Various expressions for the coefficients Am,k(V; t) appear in [9], [12]. 
We note that the quadrature rule Ov(wf; t) has degree of exactness m - 1. (For 

some special values of t, the degree of exactness may be greater than m - 1.) 
We denote the remainder term by Emv (wf; t), 

Ev(wf) = 4D(wf) - 4v(wf). 

In this paper we prove convergence theorems for the quadrature rule v (wf; t). In 
Section 2 we study the convergence of the quadrature rule 4D(wf; t). Some results 
previously established by other authors [2]-[5], [7], [9], [12], [13] are generalized and 
improved upon. In addition, better estimates are given for the remainder. In Section 
3 we give the proofs of the theorems stated in Section 2. 

2. Convergence Theorems and Estimates of the Remainder. We start with some 
notations. The symbol "const" stands for a positive constant taking on different 
values on different occurrences. If A and B are two expressions depending on some 
variables, then we write: A - B if and only if 1AB-11 < const and IA-1Bl < const, 
uniformly for the variables under consideration. 

In addition to the set DT(I), defined in Section 1, we consider the following 
classes of functions: 

LD(X) = {f EC(I) I c(f; 8) logxl1 = o(l), 8 0 +, X > O}, 

Lipm X = {f CM C I |(U; 8) < M82, 8 > O, M> O,AX (0, 1]}, 

C(k)(I) = {f EC(I) If (k) eC(I),k>1}. 

It is well known that 

LD(1) D DT D LD(1 + X) D LipMII, 1, X > 0. 
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Throughout this paper, all functions are Riemann-integrable (possibly in the im- 
proper sense). Moreover, we set 

I1f IIE = mxI f(x)1; lIf j?j=jlf III. 

First, we assume that w(x) = v(x), where 
p 

(2.1) v(x) = i(x)(1 - x)aH iti - xI (1 + X) 
i-1 

with -1 < t1 < t2 < ... < tp < 1; a,/3, Y>-1,i=1 2,. ..,p; p > 0; 0 < 
DT(I). We say that v(x) is a "generalized smooth Jacobi" weight (v e GSJ). 

In what follows, A is a closed set such that A C D:= [-1, 1] - { ? 1, tl,..., tp }. 
Concerning the convergence of (1.2), we will prove the following theorems. 

THEoREM 2.1. Let f e LD(1) and w E GSJ be such that the integral 'F(wf; t) exists 
for all values of t E D. Then the sequence t 4M(wf; t)}m eN converges to 'I (wf; t) for 
all t E D. 

THEOREM 2.2. If w E GSJ, then for any function f e DT(I) the sequence 
( w 

(wf; t) }m N converges uniformly to ID (wf; t) on A. 

THEOREM 2.3. If w E GSJ, the following relations hold, 

(2.2) IIEw(wf) | o(log-m), f E LD(1 + A), X > O, 

(2.3) 1EM (wf ) Iconst logi f LiPMpX, O < A < 1, 

(2.4) IE w(wf) < const (f k ) logim, f E C(k)(I). 

Remark 1. The results presented above hold in the special case in which w = u 

(1 - x)a(1 + x)1O is a Jacobi weight. This case is of practical interest and is studied 
in [4], [5], [9], [12]. 

The relation 

(2.5) IIE(wf)L < const v < Af LipMA, m X-2v' 2~' f 
has been stated in [4], [5]; it is extended in [9] to read 

(2.6) IIEw(wf) IL cns < t, (k)E LipMX. m Zi < k+X-2i' v m 

Further, for any function f E LiPM X, the relations 

(2.7) IIEw(wf)I < const 10g Y=max(a,)> 2 m ~~~~X-y--1/2' m 

(2.8) IEmw(wf)IL const lg m y = max(a,) < -27 

(2.9) |Ew(wf)1, < const gX , a = ,B=-2 

are proved in [12]. The results of Theorem 2.3 thus generalize (2.9) and improve 
upon (2.5), (2.6), (2.7), (2.8). Moreover, the convergence Theorems 2.1 and 2.2 hold 
for spaces of functions which include LipM A. 
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We now consider the case in which the weight function w is not identical to v. We 
assume that v e GSJ is defined by (2.1) and w e DT(A) for all closed sets A such 
that A c D. 

Under these assumptions we have 

THEOREM 2.4. Assume that v e GSJ and 0 < w e DT(A). If 

(2.10) w log' w is integrable on I, 

(2.11) w is integrable on I, 

Cv 1 - 

then the results of Theorems 2.1, 2.2, 2.3 holdfor the quadrature rule (Dv(wf; t) andfor 
the corresponding remainder E v( wf). 

Remark 2. Particular cases of Theorem 2.4 are contained in [3], [12], [13]. Sheshko 
assumed 

W= (1 X) (1 + X),O a, A > -1; V = (1 _ X2) >12 f E Lipm X 

and 

w = (1 - x) (1 + x) log1 , a, > -1; 

V = (1 X2)-1/2, f e LipMX, 

in [12] and in [13], respectively. In [3], Dagnino and Palamara Orsi studied the 
special case in which w is LP-integrable on I, for some p > 1, and w E LipM X on 
an interval [ c, X] c (-1, 1) such that t e [5, Xf], and v = (1 - x2)-1/2, f (k) E LipM X 
for k > 0. 

Relations of the same kind as (2.8) and (2.6) are proved in [12], [13] and in [3], 
respectively. Moreover, in [2], the authors have established the following result: 

If w e DT(I), for any matrix of knots M = {Xmji}il.m m E N, the relation 

(2.12) IIEm(wf ) 11, < const(1 + Am(M)) log 2 f (k) E LipMX, 

holds, where Em(wf ) is the remainder term of the quadrature rule and Am(M) is the 
mth Lebesgue constant with respect to the matrix M. 

We observe that relation (2.12) gives results which may be improved under the 
assumptions of the present work. 

Remark 3. Regarding the hypotheses (2.10) and (2.11) of Theorem 2.4, we note 
that (2.11) follows from (2.10) when -1 < maxi { a, /3, yi } < - 2. In the special case 
in which we assume that 

f1 (X)(1 )-max,(2a+1)/4,0j 

(2.13) P q 
x Ix - t I-max[y,/2,O](1 + x)maJx[(2f?+1)/4o0j dx < x 

i=1 

holds for some q > 1, the hypotheses (2.10) and (2.11) are satisfied. In [14], [15], 
Sloan and Smith considered a condition of the same kind as (2.13). 
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Finally, the following corollary may be of practical interest. 

COROLLARY 2.5. Suppose that w = w - a = (1 - x)'(1 + x), and v = - = 
(1- x)(1 + x)6, a,3,y, 8 > -1, are Jacobi weight functions. If 

y<2a + 2, 8 < 2p + 2 

then the results of Theorems 2.1, 2.2, 2.3 hold for the quadrature rule (Dv 'w(wa ff; t), 

and for the corresponding remainder E, vy' w? sff) 

3. Proofs of the Main Results. For the convenience of the reader, we collect some 
properties of generalized Jacobi polynomials pm(w; x), w E GSJ (cf. [10], [11]), 
which will be used in the proofs of some preliminary lemmas. 

The Christoffel function Xm(x) is defined by 

-m(X) = Xm(w; x) = p2(Wx)]X 

k=O 

The zeros of pm(w; x) are denoted by Xm,k Xm,k(W) and they are ordered so that 

Xm1 < Xm,2 < < xM,M 

The numbers 

Xm,k 
= 

xm,k(W) 
= Xm(W; Xm,k)5 

are the Christoffel constants. Set Xm,k(W) = cos Om,k for 0 < k < m + 1, where 
xm,O =-1, xm,m+l = 1 and O < 6m,k < T. Then, 

(3.1) 6m,k 6 mm,k+ 
- 

m-15 

uniformly for 0 < k < m, m E N. 
Define wm by 

p 

Wm (X) = (,1 - X + m 1)2?l 171 (It -xl + m1)Y 
i=l 

x (V/1 + X + M-1)2,0+1, - < X <1 

Then, 

(3.2) Xm(x) m1w-lwm(x), uniformly for -1 < x < 1, 

m E N; 

(3.3) Am,k i m Wm(xm,k), m E N; 

(3.4) Pm-l(Xm,k) V(1 
_ 

XAk)/Wm(Xmk), k = 1, 2, ..., m, m E N; 

(3.5) pm(x) | < const( w(x) 1 + 1), uniformly for-i A x ? 1, 

m E N. 

Now let xc(m) = xm c be the knot closest to t, defined by Xm k < t < Xm k+l; 

It - xm,cl = min{(t - Xm,k)5(Xm,k+l - t)}, k > 1. Then it is known that for any 
t E( I1 

(3.6) llmc(w; t) | 
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(see [10, proof of Theorem 33, p. 171]). Define 

*(l) - , am, ; Pm(I) x - x t 
i= IXm,i - tlI i1 m i 
i*c i*c 

A*(t)-4(w;t)-pm(t); **(t) = m AXi 
I 
Pm-l(Xm,i)| 

i= m IXmi -t 
i*c 

We first prove 

LEMMA 3.1. For any weight function w e GSJ, and for m sufficiently large, we have 

(3.7) <(t) c const[w(t)(I + logm) + r(t)], t e D , 

(3.8) p*(t) < const[1 + w(t)log1 +t+ r(t)], t E D, 

(3.9) 8*(t) < const a*(t)logm, t E D, 

where r(t) = Jf1 Iw(x) - w(t)llx - tl- dx. 

Proof. Without loss of generality we assume that x m,c = Xm, k < t < Xm k + 1- Then 

(3.10) t Xm,kI Xm,k+1 
- t m-. 

Further, for any t e- D, there exists a closed set A such that A c D and t is an 
interior point of A. Moreover, xm,ki1 Xmi,k Xm k+1 also are interior points of A for 
sufficiently large m. Then, by the generalized Markov-Stieltjes inequalities (see [6, 
Lemmas 3.2, 3.3]), we obtain 

fXmk1 w( dx < , X < X,n,k+i + k1 W(x) dx, 
-' 

t- i=i xm,J t X,k-i1 - t - X 

; w(x)d in X7 < -t(X 
dx_ 

_, 
M _ _ _ _ _ kW(x)dx. 

Xm,k+l i=k+l XMj m,k+l Xm k+l 

From these inequalities, and by (3.10) and (3.3), we get 

,a,*n(t) < const + jnkI 7(X dx + f W(x) dx, 

pm*(t) < const + J dx + S t dx. 

By an easy calculation (3.7) and (3.8) follow. 
To prove (3.9), apply (3.3) and (3.4) to obtain 

(3.11) -P(X m) j 

Therefore, 

_________ f 1 - x 2 tI o, ,'(t) m |ii rmix ,,, - i/2, 

from which (3.9) follows. D 
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Before proceeding further, we observe that, by (3.8), 

(3.12) |A*(t)I< const[1 + w(t)log1 + + F(t)j. 

Moreover, 

(3.13) |am*||, < const(logm + 1), 

(3.14) 8m*|l1 < const(logm + 1), 

(3.15) IlpmV11 < const, 

(3.16) IIAm ||, < const, 

where A is a closed set such that A c D. 
The Lebesgue function Lm(w; x) is defined by 

m 
Lm(w; x) E llm, i(W; x) 

i=l 

It can be estimated by 

LEMMA 3.2. If w E GSJ, then the inequality 

(3.17) ||Lm(w) 11, < const(logm + 1) 
holds for sufficiently large m, where A is a closed set such that A\ C D. 

Proof. From [6, III, (6.3)], 

lm,i(w; x) amnlXM X Pm(X) am-,/am s 1. 
am x M, 

Applying (3.5) we see that 

jllMi(w;x)jl constAX 
IPM 

1( ml) I i cx 
j' x -Xm,iI 

uniformly for x E A. Hence we can write 
m 

Lm(W; x) = EI lm i(w; x) I + Ilm,c(w; x) I 
i=l 
i*c 

< const8,*(x) + Ilm,c(w; x) x GE 

so that by (3.6) and (3.14) the lemma follows. O 
Now let 

m 
(3.18) *V (W; t) = Am ( )| 

k=1 

where Am k are the coefficients in (1.2). The results presented so far are sufficient to 
prove the following 

LEMMA 3.3. If w E GSJ,- the relation 

(3.19) *w (w; t) < const(logm + 1), t E D, 

holds for m sufficiently large. 
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Proof. For any t E D, there exists a closed set A such that A c D and t is an 
interior point of A. Moreover, xm c also is an interior point of A for m sufficiently 
large. Since 

im,k(W; X) = amAXk Pm-l(Xm ,k) Pm(X), am-1/atm < 1, 
am X -Xm,k 

and applying the Gaussian quadrature rule 

l im(k(w; x) m im,k(W; Xm,j) lm,k(W; t) 

I xt j=1 Xmjt 

+4D(w; t)lm,k(W; t) 

or its limiting case, we see that 
(i) if t # Xm ,, then 

Am,k(w; t) = Am(t)lm,k(w; t) + xm,k _ 'mk w; t) Am,c 
Xm,kt Xm,ct 

X m,k am1 Pm_1(Xm,k) A* A()1m,k(W; t) F _+ Xm k Jm'C, Xm,kt am m,k 

for k = c; 

Am,c(w; t) = A*(t)lm,C(w; t) + Xmclt j,c(w; T<) for k = c; 

where Tc, Tc' E (t, Xm,c) c ; 
(ii) if t = Xm,' 

A(w ~~~~ Xm,k arn-1 Pm-1(Xm,k) p( ) 
Am,k(w; Xm,c) X - + mk(xmc)mc 

Xm,k -m,c am x m,c m,k 

for k # c; 

Am,c(w; xm,c) = A* (xm,c) + l,c(w; xm,c)Xm,c for k = C. 

We then obtain from (3.3), (3.5), (3.6), and applying Bernstein's inequality for the 
derivative of a polynomial (see [8, p. 92]), 

Xm,cPm'(Tc)J< constllpmllIA < const, 

I Xm,j,',( jw; T) I < constl m,c(w ) [,Xmc] const. 

In the same way, we obtain 

m,cp,'(xm,c) < const, Im,clm,Jc(w; Xm,c) I < const 

Thus, in both cases (i) and (ii), we deduce from (3.6) and (3.16) that 

Am,c(w; t) < const, 

IXm,k - t 
costlmkw;km- 

Am,k(w; t) < Xm,k + cnstm,k(w; t) + mk It 1 k c. 

We can thus write 

I'w(w; t) < const(l + Lm(w; t) + am*(t) + Sm*(t)) 

< const(ta Lmb(w) y(.3 + (3) (3 .1 + lm fo llAo). 
so that bv (3.13), (3.14), (3.17) the lemma follows.O 
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We now set 

(3.20) rm-l f- qf - q1, 

where qm is the best approximation polynomial of degree m - 1 for the function 
f. It is well known that 

||rm_l ll constw(f; M-1), f GE C(I), 

11 rm -1| 11 constM -kW(f (k); m-1) kE- C(k)( I), k >, 1 

(see, for example, [14, p. 6]). With these notations, we have 

LEMMA 3.4. Let w > 0 be integrable on I, and let w e DT(A), where A is a closed 
set such that A c A 5 (-1, 1). If the integral D(wf; t) exists for t E A c (-1, 1), then 
for any function f E LD(1), we have 

Rm(f; t):= II(w[rm_ -rm_1(t)]; t) | 

K constw(f; m-1){w(t)(logm + 1) + r(t)} + of(l) 

where the subscript t in the notation o? indicates that the "o" condition need only hold 
pointwise in t and not necessarily uniformly. Moreover, under the same hypotheses for 
w, iff E DT(I), then 

IIRmf l l constw(f; m1)(logm + 1) + o(1), fE EDT(I), 

IIRmf |< o(log" m), fE LD(1 + y), y> 0, 

IIRmf || < constjjrm-1jllogm, f E LipMX, 0 < X < 1. 

The proof of this lemma follows immediately from a property proved in [2, 
Proposizione 2.1, p. 11]. 

Proofs of Theorems 2.1, 2.2, 2.3. Since rule (1.2) has degree of exactness m - 1, we 
have 

Emw(wf; t) = Emw(w(rm, - rmi,(t)); t) 

= 4(w(rm-, - rm-i(t)); t) - m(w(rm_ - rm-i(t)); t). 

Hence, 

(3.21) tEmw(wf; t) I < 211rm-111*mw(w; t) + Rm(f; t). 

Thus Theorems 2.1, 2.2, 2.3 follow from Lemmas 3.3 and 3.4. 
In order to prove Theorem 2.4, we need some more preliminary results. 

LEMMA 3.5. Let v E GSJ and let u >? 0 on I, u E DT(A) where A c D is a closed 
set. If 

u log+ u is integrable on I, 

U(v ll - X2 )l/2 is integrable on I, 

then 

(3.22) Lm (v; x) u(x) dx < const. 
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The proof of this lemma follows immediately from an important result of Nevai 
(see [11, Theorem 1, p. 680]). 

We are now in a position to prove the following 

LEMMA 3.6. Let v e GSJ, and let w > 0 on I, w E DT(A), where A c D is a 
closed set. If the functions w log' w and W(V-1/2(1 - x2)-1/4) are integrable on I, 
then 

(3.23) ', (V; t) < C{4, (V;t) + logm + 1) 

holds for m sufficiently large, where C is a constant dependent on t, when t E D, while 
C is independent on t when t E A. 

Proof. Let t be a fixed point belonging to D = Uf'0(ti, ti+1), where to = -1, 
tp = 1. There is then an index j e {O,l,...,p} such that tj < t < tjf+. Define 
d(t) -2 min{t - tj, tj+l - t}. Clearly, d(t) > 0 for any t E D. Since 

AW k(V; t) =w(t) AV k(; t) - (t) 
| m,(;x) 

x) - 
v 

t)d 

+ J l,4(v; x) w(x) - w(t) dx, 
-~ x-t 

we get 

W I',(v; t) w (t) Mv(V; t) + w(t) Lm(V; T) Ix - tUlw(v; Ix - tI) dx 

+Lm(v; Tr) Ix - t11-wl(w; Ix - tI) dx 
Ix-tl d(t) 

+ - Wt Lm (v;x) v(x) dx 
d(t) v(t) /x-t >d(t) 

+ | Lm(v; x)w(x) dxj 
IX-t> d(t) 

where T, T' E [t - d(t), t + d(t)] :Tt. 
We then obtain 

v 
(t) [ I( v; t) + 21ILm( v) |IT 

d(t) 
8-1w(v; 8) d] 

+2IILm(V) II p(t)8 -1w(w; 8) d 

+ d) [w(t) J Lm(v;x)v(x)dx +J Lm(v;x)w(x)dxj. 

Since v, w e DT(A), the first two integrals on the right are bounded. Applying 
Lemma 3.5 for u = v, u = w, we deduce that the other integrals are also bounded. 
By Lemma 3.2, the first part of the lemma follows. 
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Now assume that t E A = UP0[ai, bi], where [ai, bi] C (ti, ti+1), i = 0,1,..., p. 
Let 

,= 2*n m ai- ti,tj+j - bi} > 0. 

Obviously, the number IL is independent of t and [t - ,u, t + y] c D for all t E D. 
Then, we can repeat the previous proof with IL instead of d(t). Finally, since w and 
v are bounded on A, the proof of the lemma is completed. rJ 

Proof of Theorem 2.4. Proceeding as in the proof of the previous theorems, we 
obtain 

IEmv(wf; t) I < 211 rm- ll'mw(v; t) + Rm(f; t). 
Thus, by Lemmas 3.6, 3.5, 3.3, the theorem follows. 
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